
Generators in Athena

release 6.5.0 and later

Updated 23 July 2003

Ian Hinchliffe (I Hinchliffe@lbl.gov)
Georgios Stavropoulos (George.Stavropoulos@cern.ch)

July 25, 2003

1 Introduction

The individual Generators are run from inside Athena and their output is converted into a common
format by mapping into HepMC. A container of these is placed into the transient event store under
Storegate. This is presented for downstream use by simulation, for example by the fast simulation.
The user is assumed to know how to run athena. The bare minumum is how to make a TestRelease
area from which to work. If you do not know this start by consulting the Athena documentation
[1]. Once a TestRelease has been set up the sammple jobOptions files.

This note describes the overall structure. The user will need to be concerned with Generator-
Modules, GenzModule the specific inerface pagkages for each generator such as Herwig i GenAnal-
ysisTools and GeneratorFilters packages. Each available Generator has seperate documentation
describing its use in detail; these are contained in Herwig i Isajet i, CompHep i and these should
be consulted. The current list of supported Generators is Herwig, Pythia, Isajet, Hijing, AcerMC,
CompHep, AlpGen, Taoula. Photos, Phojet and ParticleGenerator.

The organisation of the code is as follows

• GeneratorModules contains the base classes from which the specific inherit.

• Pythia i contans the code for the Pythia interface. and the Algrorithm to load Pythia

• Herwig i contans the code for the Herwig interface. and the Algrorithm to load Herwig

• Isajet i contans the code for the Isajet interface. and the Algrorithm to load Isajet

• Hijing i contans the code for the Hijing interface. and the Algrorithm to load Hijing

• Tauola i contans the code for the Tauola interface. and the Algrorithm to load Tauola

• Photos i contans the code for the Photos interface. and the Algrorithm to load Photos

• AlpGen i contans the code for the AlpGen interface. and the Algrorithm to load AlpGen

• Phojet i contans the code for the Phojet interface. and the Algrorithm to load Phojet

• ParticleGenerator contans the code for the ParticleGenerator interface. and the Algrorithm
to load PartilceGenerator

1



• CompHep i contans the code for the CompHep interface. and the Algrorithm to load it

• AcerMC i contans the code for the AcerMB interface. and the Algrorithm to load it

• GeneratorUtils contains some utility routines.

• GeneratorFilters contains some examples of how to filter events.

• GenzModule provides the ability to read events made by the G3 Simulation and pass the
envents into Athena in a uniform manner; for example, so they can be used by Atlfast for
example

• GeneratorObjectsRoot is a package that outputs and inputs the events in Root I/O format.

• GeneratorObjects sets up the containers which will hold the events in a collection of HepMC
events. McEvent also sets up the serialisers for ROOT.

• McEventSelector is responsible for assigning run numbers and providing the hooks to Gaudi-
Interfaces, it uses EventAthena.

• GenAnalysisTools is a set of algorthms for Generator analysis, it is used mainly by recon-
struction. It contains three packages

1. CBNT Truth, used for the truth part of the CBNT combined Ntuple

2. TruthExamples. This has examples to show histrogramming and listing of generated
events

3. TruthHelper, containing helper classes for extracting stable particles for example.

• PythiaB. Specific version of Pythia used by the B-phyiscs group.

The organisation and dependencies is indicated in the simplified figure.

2



Generators

Herwig_i

Isajet_i

GeneratorObjects

GeneratorUtils

Pythia_i

GeneratorModules

McEventSelector

Simulation/HepMC

Event/EventStructure

EventAthena

External/Pythia

External/Isajet

External/Herwigexternal/pythia

external/herwig

external/isajet

There are generator specific implementations for a single particle gun, Herwig, Isajet, Tauola,
Genz and Pythia. The code for the Generators is in afs/cern.ch/atlas/offline and is linked via
linksets defined by External/Pythia, External/Isajet External/Herwig, and External/Stdhep. De-
tailed documentation on the specific interfaces for the generators can be found in the /doc area of
each of the packages listed above.

The HepMC/GenEvent class allows to store into its signal process id an integer ID that uniquely
specifies this signal process. In Generators we allow the use of several generators and it would be
usefull to store in this ID the generators combination which was used to produce the event.

For example someone used AlpGen to produce some events, and then Herwig to hadronize
them and Tauola to decay the taus. This requires to adopt a certain convention for this Gen-
Event/signal process id. The one adopted is

signal process id = I ∗ 1000000 + J ∗ 100000 + K ∗ 10000 + process
where

I: 1 = Pythia, 2 = Herwig, 3 = Isajet, 4 = Single, 5 = Hijing, 6 = Phojet
J: 1 = Comphep, 2 = User, 3 = Acermc, 4 = Alpgen
K: 1 = Tauola, 2 = Photos, 3 = TauolaAndPhotos

3



So, in the example above the ID will be
signal process id = 2 ∗ 1000000 + 3 ∗ 100000 + 1 ∗ 10000 + Alpgen process

This convention is implemented into the Generators/GeneratorModules/GeneratorName as an
enum. There somebody can find also several methods to unpack the signal process id.

2 GeneratorFilters

This package contains some very simple examples of how to filter generated events. A base class
(GenFilter) is provided to open the event collection. The actual filters inherit from this class.
Examples are provided ElectronFilter LeptonFilter and ZtoLeptonFilter. The first two pass events
that have either an electron or a lepton in the specified PT and η ranges (these can be set from
jobOptions). The last passes events that have a Z decaying to leptons.

The filter should be used in a Sequence as follows.

ApplicationMgr.DLLs += { "Herwig_i","TruthHelpers" };
ApplicationMgr.DLLs += { "HbookCnv" };
ApplicationMgr.DLLs += { "GeneratorFilters" };
ApplicationMgr.DLLs += {"GaudiAlg"};
ApplicationMgr.HistogramPersistency = "HBOOK";
ApplicationMgr.TopAlg = {"Sequencer/Generator"};
Generator.Members = {"Herwig", "ZtoLeptonFilter", "HistSample"};
HistogramPersistencySvc.OutputFile = "herwig.hbook";
NTupleSvc.Output = { "FILE1 DATAFILE=’herwigtuple1.hbook’
OPT=’NEW’" };

This will call Herwig and any events that have a Z → leptons in them will pass the filter and
be processed by the HistSample Algorithm. If an event fails the filter it is thrown away and the
sequence restarts.

References

[1] http://atlas.web.cern.ch/Atlas/GROUPS/SOFTWARE/OO/architecture/General/index.html

4


